• ← 1.5. Neighbourhood operations: DEM and catchment analysis
  • 2.1. Visualisation of spatio-temporal data →

2. Dynamic ModellingΒΆ

Download this website as pdf.

Download this website as epub (for e-readers).

To subscribe to our courses visit http://www.pcraster.eu

  • 2.1. Visualisation of spatio-temporal data
    • 2.1.1. Static data
    • 2.1.2. Temporal spatial data
    • 2.1.3. Temporal non-spatial data
  • 2.2. The dynamic modelling framework
    • 2.2.1. The dynamic modelling class
    • 2.2.2. Modelling with feedback
  • 2.3. Reading and writing spatio-temporal data
    • 2.3.1. Reading and writing static spatial data
    • 2.3.2. Reading and writing temporal spatial data
    • 2.3.3. Reading timeseries
  • 2.4. Point operations: a snow melt model
    • 2.4.1. Precipitation and temperature
    • 2.4.2. The snow store
    • 2.4.3. Runoff generation
  • 2.5. Neighbourhood operations with defined topology: the snow melt model
    • 2.5.1. The local drain direction map
    • 2.5.2. Drain all runoff within one time step: the accuflux function
  • 2.6. Calculating descriptive statistics: the snow melt model
    • 2.6.1. Over the spatial domain
    • 2.6.2. Over time
  • 2.7. Direct neighbourhood operations
    • 2.7.1. Discrete attributes: cellular automata
    • 2.7.2. Continuous attributes: spatial diffusion in vegetation modelling
  • 2.8. Probabilistic spatial models: forest fire and seed dispersal
    • 2.8.1. Random variables in point models
    • 2.8.2. Direct neighbourhood interaction: forest fire
    • 2.8.3. Neighbourhood interaction over a distance: plant seed dispersal
  • 2.9. Beyond the Model class
 
  • ← 1.5. Neighbourhood operations: DEM and catchment analysis
  • 2.1. Visualisation of spatio-temporal data →

Table of Contents

  • 1. Map Algebra
  • 2. Dynamic Modelling
  • 3. Stochastic Modelling
  • 4. Data Pre-Processing with GDAL
  • 5. Programming with Python
  • 6. Calibration

Quick search

©2010-2023, PCRaster Research and Development Team.