3. Stochastic ModellingΒΆ

Download this website as pdf.

Download this website as epub (for e-readers).

To subscribe to our courses visit http://www.pcraster.eu

  • 3.1. Visualisation of stochastic data
    • 3.1.1. Realizations
    • 3.1.2. Probability distributions and exceedance probabilities
    • 3.1.3. Confidence intervals
  • 3.2. The stochastic modelling framework
    • 3.2.1. The static stochastic modelling class
    • 3.2.2. The dynamic stochastic modelling class
  • 3.3. Writing to disk, drawing realizations
    • 3.3.1. Writing realizations to disk
    • 3.3.2. Drawing realizations
  • 3.4. Functions calculating statistics over realizations
    • 3.4.1. Mean and variance, static data
    • 3.4.2. Percentiles, static data
    • 3.4.3. Dynamic data
  • 3.5. Static modelling with point operations: forest fire
    • 3.5.1. Introduction and gradient calculation
    • 3.5.2. Point operation to calculate fire front velocity
  • 3.6. Static stochastic modelling: neighbourhood operations
    • 3.6.1. Drawing realizations of a stochastic digital elevation model
    • 3.6.2. Propagate DEM uncertainty through slope calculation
    • 3.6.3. Neighbourhood defined by topology: relative distance calculation
  • 3.7. Dynamic stochastic modelling: snow melt model
    • 3.7.1. Snow melt as a stochastic model
    • 3.7.2. Stochastic dynamic input: precipitation
    • 3.7.3. Stochastic parameters: temperature lapse rate

Related Topics

  • Documentation overview
    • Previous: 2.9. Beyond the Model class
    • Next: 3.1. Visualisation of stochastic data

Quick search

©2010-2017, PCRaster team. | Powered by Sphinx 1.6.3 & Alabaster 0.7.6