
1/1/1

1

Programming Python

Derek Karssenberg

Book

Lecture and exercises are based on the book:

Think Python, How to Think Like a Computer Scientist

Freely available via:
http://www.greenteapress.com/thinkpython/

Topics

• Choosing a programming language

• Python applications
• Variables, expressions and statements
• Functions
• Conditionals and user intervention
• Fruitful functions and program development

• Strings
• Lists
• Files and exceptions

Why learn programming?

Structuring your work

• Repeatable and fast
• Separate source data and 'working data' - automatic

conversion by a program!

Developing models
• Combined with PCRaster
or other modules

Other reasons
• Other software, e.g. developing a www site, creating a

graphical user interface

xkcd.com

Choosing a language (1)

Compiled versus interpreted programming languages:

xkcd.com

Choosing a language (2)

Low-level languages versus high-level languages

• Low-level language: concepts of computer language is
similar to concepts of a computer

• High-level language: concept of computer language is
closer to how humans think

1/1/1

2

Low-level language: example
program (C++)

To print

Hello, world.

on the screen, we need in C++ the following program

#include	<iostream.h>

void	main()
{
cout <<	 "Hello,	 world."	 <<	 endl;
}

High-level language: example
program (Python)

To print

Hello, world.
on the screen, we need in Python the following program

print	 "Hello,	 world."

Choosing a language (3)

Compared to low-level languages, a high-level language

• results in shorter programs
• is easier to learn
• results in longer runtimes (but not always)

Examples of computer languages

• Machine languages: compiled, low-level
• C++, Fortran, Java: compiled, low-level
• Perl, Python, PCRaster, MATLAB: interpreted, high-level

Why Python?

• High-level language: easier to learn

• Free and open source software
• Runs on all platforms (i.e. Microsoft Windows, Linux, Unix,

Apple Macintosh)

• Comes with many modules (preprogrammed stuff)
• Common in the GIS world
• Used as framework for spatio-temporal modelling in

PCRaster
Website and software: http://www.python.org

Example Python applications (1)

• Widgets

Example Python applications (2)

• Simulation models

Like spatio-temporal modelling with
PCRaster

http://pcraster.geo.uu.nl/projects/appl
ications/pcrglobwb/

Model concept of
PCR-GLOBWB.

1/1/1

3

Example Python applications (3)

• Games

Like Tux Math Scrabble
or Void Infinity

www.pygame.org

Variables, expressions and
statements

Types

Values have a type: string, integer, floating-point or Boolean

String
"This is a string", or "0.234", or " " (whitespace)

Used for:

• proper names
• text printed on the screen or written to a file

Types

Values have a type: string, integer, floating-point or Boolean

Integer
2, or 3, or -2, or 0, not 0.0!

Used for:

• Classes, e.g. id’s of provinces
• counters (e.g., 0,1,2,3,4...100)

Types

Values have a type: string, integer, floating-point or Boolean

Floating-point
2.234, or -12.3234, or 2343.1, or 0.0

Used for:

• scalar values used in calculations, e.g. elevation

Types

Values have a type: string, integer, floating-point or Boolean

Boolean
0 (FALSE) or 1 (TRUE)

Used for:

• result of comparisons
• conditions

1/1/1

4

Variables (1)

A variable is a way to reference to a known or unknown value

Assigning a value to a variable:
• streamPower = 23.4
• myName = "Piet“

Variables (2)

Meaning of “=“ is

• equality in mathematics
• assignment in Python, assigning a value to a variable

Equality in Python is “==“
This will be discussed later.

Variables (3)

Some rules:

• use meaningful names
• no spaces and preferably no underscores
• first letter a lowercase

e.g., streamPower

instead of:

StreamPower
stream Power
stream_power

Expressions

An expression is an instruction to execute something

A simple program (saved as simple.py):

Python command line mode

At the prompt, type:

And you get the python prompt:

Enter single statements, e.g.:

python <Enter>

>>> 2*3
6
>>> a = 2.5
>>> b = 3
>>> c = a * b
>>> c
7.5

>>>

Creating and running a Python
program/script
A python program is an ascii file

• Edit with any ascii editor (e.g. edit, vi, Wordpad etc)
• Or use editors specifically for Python (e.g. IDLE, Canopy,

Spyder)

Executing a python program
• type on the command line:

• or use the ‘Run’ button in a dedicated editor

All statements will be executed from top to bottom!

python myProgram.py

1/1/1

5

Functions Operators, syntax

Syntax:

rV = arg1 operatorName arg2

with:
• rV: return value
• arg1, arg2: arguments

• operatorName: name of the operator

The operator 'reads' the inputs (arguments), does 'something'
and assigns values to its outputs, the arguments.

Example:
a = b * c

Functions, syntax

Syntax:

rV1, rV2,..,rVn = functionName(arg1, arg2,..,argm)

with:
• rV1, rV2,..,rVn: return values 1..n
• arg1, arg2,..,argm: arguments 1..m

• functionName: name of the function

The function 'reads' the inputs (arguments), does 'something'
and assigns values to its outputs, the arguments.

Using functions, example (1)

The function float reads the value of the argument, converts it
to a floating-point and returns a floating-point value:

A hashtag (#) makes that the expression after it is not
executed. Can be used to:
• put comments in the script (do this!)
• (temporarily) comment out parts of the script, e.g. when

testing

making a float
anInteger=2
aFloatingPoint=float(anInteger)

Using functions, example (2)

The function string.capitalize returns a copy of its input
argument (a string), with the first character capitalized:

When executing this script (name.py), it prints:

import string

aName="piet"
aNameCapitals=string.capitalize(aName)
print aNameCapitals

Piet

Using functions, example (3)

The function string.replace returns a copy of its input
argument (a string), with a part of the string replaced with
another string:

When executing this script (name2.py), it prints:

import string

aName="piet"
aNewName=string.replace(aName,"iet",
"eter")
print aNewName

peter

1/1/1

6

Modules/libraries

A module is a file with a collection of related functions. It
needs to be imported at the top of a program, e.g.:

Functions from a module are called using dot notation, e.g.:

import string
import math

aNewName=string.replace(aName,
"iet", "eter")
logRunoff=math.log10(runoff)

Creating functions

Python comes with many built-in functions (most of them in
modules)

You can also create functions yourself

• new functions are built as a combination of existing python
components (expressions)

• the definition of a new function is given in the main
program or in an associated file

• a new function can be used anywhere in the program

Why creating functions?

• To group statements serving one purpose; this makes the
program easier to read and to debug

• To make the script shorter by eliminating repetitive code
• If you want to change something in the function you only

have to do it once, in the repetitive code this would be
several times

• Functions can be reused by others or in other programs of
your own

Function definition, syntax

def functionName(arg1,arg2,..,argn):

statement1
..
statementm
return varReturn1,...,varReturnl

with:
• functionName: the name of the new function
• arg1, arg2, ..., argn: input arguments
• statement1, ...,statementm: statements doing something

with the inputs
• varReturn1, ...,varReturnl: variables returned by the

function

Function definition, example

The function calculateRectangleArea with two input arguments
returns one value:

Function definition, example
A variable created in a function does not exist outside the
function! E.g.:

1/1/1

7

Conditionals and user intervention
(and comparison operators,
Boolean operators)

Comparison operators
Comparison operators compare two values or, more
commonly, variables

The result of comparison operators is a 0 (FALSE)
or 1 (TRUE), of type Boolean.

x == y # TRUE if x is equal to y
x != y # TRUE if x is not equal to y
x > y # TRUE if x is greater than y
x < y # TRUE if x is less than y
x >= y # TRUE if x is greater than or equal to y
x <= y # TRUE if x is less than or equal to y

Comparison operators

The result of comparison operators is a 0 (FALSE)
or 1 (TRUE), of type Boolean.

a = 4>3
print a
print(type(a))

1
<type 'bool'>

Logical (Boolean) operators

Evaluate the logical relation between two values or variables

The operands (x and y above) are in most cases Booleans
where:
• a 0 is considered FALSE

• a value unequal to 0 is considered TRUE

The result of logical operators is a 0 (FALSE) or 1 (TRUE), of
type Boolean.

x and y # TRUE if both x and y are TRUE
x or y # TRUE if x or y are TRUE
not x # TRUE if x is FALSE

Combining comparison and logical
operators

For instance:

(a >= b) and not (d < c)

(2*a < 100.0) or (b/3 > c)

Conditional statements, syntax

A conditional statement checks whether a condition is fulfilled
and only if it is, it executes a block of code:

with:
• CONDITION, an expression with a Boolean result

• STATEMENT1,..,STATEMENTn, statements which are
executed if the CONDITION is TRUE

if CONDITION:
STATEMENT1
...
STATEMENTn

1/1/1

8

Conditional statements, example
(1)

if (rain > 0):
print "stay at home!"

Conditional statements, example
(2)

if (x >= 0):
sqrtX=math.sqrt(x)
print "the square root of x is ", x

Conditional statements and
alternatives, syntax
You can also define a block of code that is executed if the
condition is not fulfilled:

with:

• ALTSTAT1..ALTSTATm, statements which are executed if
the CONDITION is FALSE

if	CONDITION:
STATEMENT1
...
STATEMENTn
else:
ALTSTAT1
..
ALTSTATm

Conditional statements, example
(1a)

if (rain > 0):
print "stay at home!"

else:
print "go swimming!"

Conditional statements, example
(2a)

if (x >= 0):
sqrtX=math.sqrt(x)
print "the square root of x is ", x

else:
print "the square root cannot be calculated since\

x is negative!"

Conditional statements chained,
syntax
You can also chain different conditional statements. The
second is checked if the first is not fulfilled:

with:

if CONDITION:
STATEMENT1
...
STATEMENTn

elif ANOTHERCOND:
ALTSTAT1
..
ALTSTATm

else:
ALTALTSTAT1
..
ALTALTSTATl

1/1/1

9

Conditional statements, example
(1b)

if (rain > 0):
print "stay at home!"

elif (temperature > 30):
print "go swimming!“

else:
print "have a drink on a terrace!"

User intervention: keyboard input
(1)

User intervention: keyboard input
(2)

Fruitful functions and program
development
• Loops

• Encapsulation
• Generalization
• Local variables

Loops, the for statement, syntax

The for statement is used for loops when you already know in
advance how many iterations are needed.

with
• ELEMENT, an element which can be of any type
• COMPOUND, a compound data type, e.g. a list (explained

later)
• STATEMENT1,..,STATEMENTn, the statements in the 'body'

of the while statement

for	ELEMENT	 in	COMPOUND:
STATEMENT1
...
STATEMENTn

1/1/1

10

For statement, example (1) For statement, example (2)

Loops, the while statement, syntax

The while statements is used for loops when you do not know
how many iterations are needed.

with
• CONDITION, a Boolean expression
• STATEMENT1,..,STATEMENTn, the statements in the 'body'

of the while statement
• Note: STATEMENT1,..,STATEMENTn generally

determine CONDITION

while	CONDITION:
STATEMENT1
...
STATEMENTn

Loops, the while statement,
example (1)

Operation:
• evaluate CONDITION, yielding TRUE or FALSE

• if CONDITION is FALSE, exit the while statement, and
continue the program below the while statement

• if CONDITION is TRUE, execute
STATEMENT1,..,STATEMENTn, and go back to step 1

Question: What does this print?

program with a while loop
n = 0
while n < 20:
print n,
n = n+1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Loops, the while statement,
example (2)

Question: What does this print?

program with a while loop
n = 0
while n < 20:
print n,
n = n+1

print "The value of n after the loop is:", n

Loops, the while statement,
example (2)

Question: What does this print?

program with a while loop
n = 0
while n < 20:
print n,
n = n+1

print "The value of n after the loop is:", n

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
The value after the loop is: 20

1/1/1

11

Loops, the while statement,
example (3)

Question: What does this print?

program with a while loop
n = 0
while 1:
print n,
n = n+1

print "The value of n after the loop is:", n

Loops, the while statement,
example (4)

Change into:

Question: What does this print?

program with a while loop
n = 0
while n < 20:
print n,
n = n+1

print "The value of n after the loop is:", n

The value after the loop is: 40

program with a while loop
n = 40
while n < 20:
print n,
n = n+1

print "The value of n after the loop is:", n

While statement, printing a table

prints:

degrees	fraction	(m/m)
0.0	 			 	0.0
5.0	 			 	0.0874886635259
10.0	 		 	0.176326980708
15.0	 		 	0.267949192431
20.0	 		 	0.363970234266
25.0	 		 	0.466307658155

Creating functions (1)
Rewrite the code in the previous slide as (encapsulation):

Creating functions (2)
Or even as:

Creating functions (3)

1/1/1

12

Why is encapsulation useful?

• Program is easier to read

• Reuse of code
• Easy debugging

Generalization

Turn this script
into:

Generalization (2)
Generalization (3)

will print this table:

printDegreesToFractionTable(10,30,1.0)

10 0.0
11.0 0.194380309138
12.0 0.21255656167
13.0 0.230868191126
14.0 0.249328002843
15.0 0.267949192431
16.0 0.286745385759
17.0 0.305730681459
18.0 0.324919696233
19.0 0.34432761329
20.0 0.363970234266
21.0 0.383864035035
22.0 0.404026225835
23.0 0.42447481621
24.0 0.445228685309
25.0 0.466307658155
26.0 0.487732588566
27.0 0.509525449494
28.0 0.531709431661
29.0 0.554309051453

Local variables (1)

Variables created in a function are local variables:
à they are not known outside the function

E.g. this program:
def aFunction():
n = 0

aFunction()
print n

Traceback (most recent call last):
File "local0.py", line 5, in ?
print n

NameError: name 'n' is not defined

Local variables (2)

Variables created in a function are local variables:

à they are not known outside the function
à they do not affect variables outside the function

E.g. this program:def aFunction():
n = 0
print "n inside the function:", n

n = 100
aFunction()
print "n outside the function:", n

n inside the function: 0
n outside the function: 100

1/1/1

13

Local variables (3)

Also, variables in a loop are NOT local variables:

E.g. this program:
n = 0
while n < 10:
n = n+1

print n

10

Strings Compound data type, syntax of
bracket operator
Compound data type: data type consisting of smaller pieces

Data type string: compound data type consisting of letters

Selecting a single string with the bracket [] operator:

with:
• STRING, a variable of data type string
• J, index, a variable of data type integer
• LETTER, a letter of STRING (note: LETTER is also of type

string)

LETTER = STRING[J]

Bracket operator, non-negative
index

If J ≥ 0:
LETTER is the (J+1)-eth letter of STRING
So the first element has index zero!

Example:

LETTER = STRING[J]

Bracket operator, negative index

If J < 0:
J = -1 yields the last letter of STRING
J = -2 the letter before, etc.

Example:

LETTER = STRING[J]

1/1/1

14

Compound data type, syntax of
bracket operator (2)
String slice: a segment of a string

Syntax:

with:

• STRING, a variable of data type string
• I, index for start of segment, a variable of data type integer
• J, index for end of segment, a variable of data type integer
• SLICE, a segment of STRING (note: SLICE is also of type

string)

SLICE = STRING[I:J]

Bracket operator, slices (1)

I and J non-negative, J should be greater than I:

SLICE consists of the (I+1)-eth up to and including the J-eth
character

Example:

SLICE = STRING[I:J]

Bracket operator, slices (1)

Omitting I: the slice starts at the beginning of STRING

Omitting J: the slice goes to the end of STRING

Example:

SLICE = STRING[I:J]

Bracket operator, example (1)

Given: a variable that contains the name of file (e.g. from
keyboard input) :

Aim: a program that prints just the basename of the filename

fileName="data.col"

data

Bracket operator, example (2) Bracket operator, example (3)

1/1/1

15

Bracket operator, example (4) Bracket operator, example (5)

Bracket operator, example (6) The string module (library)

Contains ('preprogrammed') functions on strings, e.g.:

import string

aString="sandY"

capitalize=string.capitalize(aString) # returns Sandy (a string)
lower=string.lower(aString) # returns sandy (a string)
replace=string.replace(aString,"sa","ci") # returns cindY (a string)
find=string.find(aString,"n") # returns 2 (an integer),

index of the letter n

Using the string module

The program printing the basename can be rewritten!

1/1/1

16

Lists What is a list?

Ordered set of values (compound data type), values are the
so-called elements of a list

An element can be 'anything', e.g.

• a string
• a floating-point
• another list
• etc.

Each element is identified by an index

Comparison between strings and
lists
Resemblances:

• both consist of elements
• both refer to an element using an index
• both use bracket operator ([]) for referring to elements

Difference:

• string elements are single letters; list elements can be
anything

Creating lists

Most often used are:

The thirdList can also be created with the range function:

firstList = [0.12, 23.4, 12.5] # three elements
of type floating-point

secondList = ["New York", "Amsterdam"] # two elements
of type string

thirdList = [3, 5, 7, 9] # four elements
of type integer

thirdList=range(3,10,2) # the list [3, 5, 7, 9]

Accessing single elements
Use bracket operator

Very similar to accessing elements of a string

Accessing slices
Use bracket operator

Very similar to accessing slices of a string

1/1/1

17

Accessing elements in a loop (1)
With a for loop (shortest):

Accessing elements in a loop (2)
With a while loop:

Strings are unmutable, lists are
mutable (1)
Strings are unmutable, i.e. you cannot directly change an
element:

prints:

aString = "Back"
try to change the "B" to a "J"
aString[0]="J"

Traceback (most recent call last):
File "stringmutable.py", line 3, in ?
aString[0]="J"

TypeError: object doesn't support item
assignment

Strings are unmutable, lists are
mutable (2)
Lists are mutable, i.e. you can directly change an element:

prints:

Question: Why is there a rounding error?

aList = [0.12, 23.4, 12.5]
change the first element (0.12) to 2.34
aList[0]=2.34
print aList

[2.3399999999999999, 23.399999999999999, 12.5]

Strings are unmutable, lists are
mutable (3)
Updating slices of a list:

Nested lists

A list that is an element in another list, e.g,:

All combinations of length of lists and types are possible, e.g.:

samples = [["x","y","z"],[12,32,7],[12,40,7]]

aList= [14.2,[12,32],[12,40,"peter"]]

1/1/1

18

Accessing nested lists
Syntax corresponds to 'normal' lists, e.g.:

Accessing an element in a nested
list
Syntax corresponds to 'normal' lists, e.g.:

Accessing all elements in a nested
list (1)
We have nested lists:

Let's make a program that prints each individual value,
formatted as a table:

samples = [["x","y","z"],[12,32,7],[12,40,7]]

x y z
12 32 7
12 40 7

Accessing all elements in a nested
list (2)
First step:

Accessing all elements in a nested
list (2)
Second step:

String to list conversion (1)

The string module includes the split function, e.g.:

1/1/1

19

String to list conversion (2)

By default split splits at a whitespace character

With an additional argument, other characters can be used for
splitting:

String to list conversion (3)

Now, we have another approach to print the basename of a
filename:

Files

Computer memory and files

Computer memory

• is used by the program to store data (e.g. variables) while
running the program

• disappears when the program ends or the computer shuts
down

• is mainly managed by Python (you don't need to do that)

Files
• can be used in a program to open or store specified data
• data are stored permanently
• storage and manipulation needs to be defined in the

program (explicitly)

Files: opening and closing

Like with a book, you need to do the following steps to
read/write from/to a file:
• open the file
• read from the file

• or write to the file
• close the file

f = file("file.txt", "r") # open an existing file,
"r" indicates opening
for reading

read here from the file

f.close() # close the file
for reading

do something without the file or
do something else with the file
e.g. writing to the file

1/1/1

20

Files: example reading

read() returns a string with all contents of the file

Files: example reading
readlines()

• returns a list
• each element is a string with the content of one line from

the file

Files: example writing

write() writes a string to a file

Note: if the file already exists, its
contents are overwritten!

