

Euler method or Euler-Cauchy method, example

 $y(t_0) = y_i$

The solution is: (Euler or Euler-Cauchy method):

We have the initial value problem

 $y(t + \Delta t) = y(t) + \Delta t \cdot (ky)$

Note: this is how we solved it initially

 $\frac{dy}{dt} = ky,$

Euler

Euler

19

21

Eule **TimePlot** File Help _ 🗆 🗙 eu_ana_a.tss _____1 -5.42101e-20 --0.0002 Ē -0.0004 absolute error -0.0006 -0.0008 -0.001 **^** x: y: z: J ò 10 20 30 40 50 60 _ *t*(*s*), x 60 4

26

27

Heu **File** Help _ 🗆 × anal.tss - 1 0.045 heun.tss 0.04 0.035 0.03 E 0.025 0.015 0.01 **^** 0.005 x y: z: t: 0 10 20 30 40 50 60 ______t(s), x 60 ____ • anal.ts:

Runge-Kutta method, example	
k = -0.002; Dt = 60;	<pre># fraction output from canopy (s-1) # timestep (s)</pre>
y = 0.05 t = 0	
<pre>while t < 60 KOne = Dt * (k* KTwo = Dt * (k* KThree = Dt * (k* KFour = Dt * (k* y = y + (1.0/6. print(y) t = t + 1</pre>	y) (y + 0.5*KOne)) *(y + 0.5*KTwo)) (y + KThree)) 0)*(Kone + 2.0 * KTwo + 2.0 * KThree + KFour)

 Some conclusions, final remarks
 - in many cases, Euler method can be used (and is used)
 - when precision is important, use Runge-Kutta
 Not all diff. equations can be solved with Runge-Kutta!
 - For complicated problems, use pre-programmed software Example: MODFLOW

44

