

Spatio-temporal simulation model

- Mimics processes that occur in a spatio-temporal system
- Runs forward in time

Verstegen et al., 2012

Changes in land use, Mozambique

Schmitz & Karssenberg, 2023

Fluvial sedimentology

Dietary habits and food environment

Karssenberg et al., 2008

Spatio-temporal simulation models: examples

- Understanding how vegetation influences water erosion
- Forecasting streamflow of large rivers under climate change
- Evaluating scenarios of human activity for disease spreading
- Forecasting land use change in Netherlands 2020 2050
- Understanding the formation of fluvial deposits

• ...

Learning outcomes & course components

Learning outcomes & course components

Lecturers (1)

Derek Karssenberg - Coordinator

- Computational Geography, http://www.computationalgeography.org
- Hydrology, geomorphology, energy science, geography & health
- https://www.uu.nl/staff/djkarssenberg

Oliver Schmitz – Simulation modelling labs

- Computer science & simulation modelling
- Hydrology, Human Environmental Exposures, agent-based modelling
- https://www.uu.nl/staff/oschmitz

Kor de Jong – Simulation modelling labs

- Computer science
- Cluster computing (for large models / data sets)
- https://www.uu.nl/staff/KdeJong1

Lecturers (2)

Edwin Sutanudjaja – Simulation modelling labs

- Simulation modelling
- Hydrology
- https://www.uu.nl/staff/EHSutanudjaja/

Oriol Pomarol Moya – Simulation modelling labs

- PhD student
- Al & Simulation modelling
- https://www.uu.nl/staff/opomarolmoya

What is your background?

www.wooclap.com

Code FZAENM

Course Outline

Course outlin			W 8		9			9	
week in year		(6)	86 9					9	
6	7	8	9	10	11	12	13	14	15
Start day				7.00		-			
05/02/2024	12/02/2024	19/02/2024	26/02/2024	04/03/2024	11/03/2024	18/03/2024	25/03/2024	01/04/2024	08/04/2024
week in cours	se								
1	2	3	4	5	6	7	8	9	10
Model Theory									
Introduction	Local Models	Spatial Models	Stochastic Models	Agent-based models	Calibration			Personal project	
Model Tools									Presentation on Project
Python Programing	Python Programming, Map Algebra	Dynamic Modelling	Stochstic Modelling	Agent-based modelling	Calibration	Calibration	Project proposal		Report on Project
Short paper a	ssignment								
			first version		second version				
Exam									
						Exam			

Model Theory

Course outlin	e		100					7	
week in year									
6	7	8	9	10	11	12	13	14	15
Start day	***			P10000000		5.000.0	190.00 0.000		4.000
05/02/2024	12/02/2024	10,100,100		04/02/2024	11/03/2024	18/03/2024	25/03/2024	01/04/2024	08/04/2024
week Im	56							1	
1	2	3	4	5	6	7	8	9	10
Model Theory									
Introduction	Local Models	Spatial Models	Stochastic Models	Agent-based models	Calibration			Personal project	
Moue.									Presentation on Project
Python Programing	Python Programming, Map Algebra	Dynamic Modelling	Stochstic Modelling	Agent-based modelling	Calibration	Calibration	Project proposal		Report on Project
Short paper a	assignment								
			first version		second version				
Exam									
						Exam			

- Modelling approaches
 - Differential equations (local models)
 - Spatial models and cellular automata
 - Stochastic models (or probabilistic models)
 - Agent-based models (or individual based models)
- Combining observations and data
 - Error propagation modelling
 - Model calibration (historical data)

Study material:

- Reader
 - Study material for exam
- Powerpoint sheets
- eLectures

The reader is available for download from Blackboard or can be ordered from there as a hardcopy!

Form (1):

- e-Lectures (pre-recorded)
- Question-based lecture, weekly

Preparation for question-based lecture:

- Listen to the eLectures (online)
- Study related literature (reader, additional material if needed)

During question-based lecture:

Answer and discuss questions

Form (2):

Working group on neighborhood interaction

Preparation for working group meeting:

- Listen to the eLecture
- Study related literature (reader, additional material if needed)
- Prepare a short presentation related to the material (topics will be provided), one presentation per group

During working group meeting:

- Presentations by students
- Discussion related to presentation
- Questions related to theory

Form (3):

- Short paper assignment
 - Topic / questions provided
 - Related to one or more articles in reader
 - Work in a group
 - 2 versions with feedback on version 1
 - Max. 1000 words

Model Tools

Course outline week in year 6 Start day 05/02/2024 week in cours	7	8	9		3 8				
6 Start day 05/02/2024		8	9		3	3		20	
Start day 05/02/2024		8	9						
05/02/2024	12/02/2024	·	V	10	11	12	13	14	15
	12/02/2024			Postoreio.	NE Y9-200E 25	20205	100,000,000	1	0.0000
week in cours	12/02/2024	19/02/2024	26/02/2024	04/03/2024	11/03/2024	18/03/2024	25/03/2024	01/04/2024	08/04/2024
	e							1	
1	2	3	4	5	6	7	8	9	10
Model Theory									
Introducti	Local Models	Spatial Models	Stochastic Models	Agent-based models	Calibration			Personal project	
Model Tools									Presentation on Project
Python Programing	Python Programming, Map Algebra	Dynamic Modelling	Stochstic Modelling	Agent-based modelling	Calibration	Calibration	Project proposal		Report on Project
Short pur	ssianment								
			first version		second version			e 9	
Exam									
				1		Exam			

Contents of the course: 2. Model Tools

Topics:

- Python programming
- Static modelling: Map Algebra with PCRaster Python
- Temporal (dynamic) modelling with PCRaster Python
- Stochastic modelling
- Agent-based modelling
- Calibration

Contents of the course: 2. Model Tools

Study material:

- Think Python book, 2nd edition
- Powerpoint slides
- Computer practicals
- eLectures

The reader is available for download from Blackboard or can be ordered from there as a hardcopy!

Contents of the course: 2. Model Tools

Form:

- eLectures
- Computer practicals
 - Available in Blackboard (click on 'Communities')
 - Fill in questions in Blackboard (most labs) or upload answers to questions as text document (agent-based modelling labs only)
 - During lab hours
 - Self study (outside lab hours)

Written Exam

- On Campus, written on paper
- Open Book exam (bring your laptop if you like)
- Questions on all study materials
- Some questions in context of research paper that you receive ~2 days in advance
- Details: refer to online study guide

Case Study Project

Course outline	e		V- 8					9	
week in year									
6	7	8	9	10	11	12	13	14	15
Start day				70000000			10000000	1	1
05/02/2024	12/02/2024	19/02/2024	26/02/2024	04/03/2024	11/03/2024	18/03/2024	25/03/2024	01/04/2024	08/04/2024
week in cours	se							1	
1	2	3	4	5	6	7	8	9	10
Model Theory									
Introduction	Local Models	Spatial Models	Stochastic Models	Agent-based models	Calibration			Personal project	/ ·
Model Tools									Presentation on Project
Python Programing	Python Programming, Map Algebra	Dynamic Modelling	Stochstic Modelling	Agent-based modelling	Calibration	Calibration	Project proposal		Report on Project
Short paper a	ssignment								
			first version		second version				
Exam									
						Exam			

Contents of the course: 3. Case Study Project

Work in groups

Modelling work or literature study

Topics: see website http://karssenberg.geo.uu.nl/lspm

Form:

- Research proposal (with feedback)
- Report
- Presentation on project (last week of course)
- Self study
- Scheduled hours in computer lab (see course schedule), tutor support

Planning your work: stick to the activities scheduled for each week

Course outlin	e		8		9			7	
week in year									
6	7	8	9	10	11	12	13	14	15
Start day	42		71000	7000000		2.000.0	10000000		1.000
05/02/2024	12/02/2024	19/02/2024	26/02/2024	04/03/2024	11/03/2024	18/03/2024	25/03/2024	01/04/2024	08/04/2024
week in cours	se							9	
1	2	3	4	5	6	7	8	9	10
Model Theory			10000						
Introduction	Local Models	Spatial Models	Stochastic Models	Agent-based models	Calibration			Personal project	
Model Tools									Presentation on Project
Python Programing	Python Programming, Map Algebra	Dynamic Modelling	Stochstic Modelling	Agent-based modelling	Calibration	Calibration	Project proposal		Report on Project
Short paper a	30 1, 98								
			first version		second version				
Exam									
						Exam			

Planning your work: suggested weekly schedule

	Monday	Tuesday	Wednesday	Thursday	Friday
Morning	computer labs	eLectures, reading, labs	computer labs + QB lecture	labs	labs
Afternoon	eLectures, reading, labs	prepare questions for question-based lecture	eLectures, reading, labs	labs	finish labs / short paper, prepare for next week
5:15-7:00 pm		Computer labs (self study, lab room booked)			

focus on topic scheduled for the week

This week: introduction

2.1. Introduction to land surface process modelling, week 1

2.1.1. Key topics

- · General introduction to land surface process modelling.
- Forward modelling
- · Aims of modelling
- · Model development cycle

2.1.2. Literature for exam

Wainwright, J. and Mulligan, M., 2004, Modelling and model building, in: Environmental Modelling: finding simplicity in complexity, Second Edition. J. Wainwright, M. Mulligan (eds), p. 7-26, Wiley, Chichester.

Karssenberg, D., 2010, Introduction to dynamic spatial environmental modelling.

Burrough, P.A., McDonnel, R. & Lloyd, C.D., 2015, Principles of Geographical Information Systems, Oxford University press, Chapter 12, Space-time modelling and error propagation, p. 251-260.

2.1.3. Reading material

Karssenberg, D., Bridge, J.S., 2008, A three-dimensional numerical model of sediment transport, erosion and deposition within a network of channel belts, flodplain and hill slope: extrinsic and intrinsic controls on floodplain dynamics and alluvial architecture, Sedimentology, 55, 1717-1745. Link.

2.1.4. Lectures, e-Lectures

e-Lecture Introduction to simulation modelling

Lecture slides Introduction to simulation modelling

Table of Contents

- 2. Model Theory
- 2.1. Introduction to land surface process modelling, week 1
 - 2.1.1. Key topics
 - 2.1.2. Literature for exam
 - 2.1.3. Reading material
 - 2.1.4. Lectures, e-Lectures
- 2.2. Local models, week 2
 - 2.2.1. Key topics
 - 2.2.2. Literature for exam
 - 2.2.3. Lectures, e-Lectures
- 2.3. Spatial models, week 3
 - 2.3.1. Key topics
 - 2.3.2. Literature for exam
 - 2.3.3. Reading material
 - 2.3.4. Lectures, e-Lectures
 - 2.3.5. Working group session
 - 2.3.6. Short paper assignment
- 2.4. Stochastic models, week 4
 - 2.4.1. Key topics
 - 2.4.2. Literature for exam
 - 2.4.3. Reading material
 - 2.4.4. e-Lectures
- 2.5. Agent-based models, week 5

Group work

- Computer Labs: group of 1 or 2 students (what you prefer; recommended is 2 students)
- Short Paper Assignment: group of 3 students (exceptions: 2 students)
- Working Group: group of exactly 4 students (exceptions may apply)
- Case Study: group of exactly 4 students (exceptions may apply)

Self-subscribing to groups:

Blackboard -> Course Content

Please do so also if you work alone (thanks).

Corona / illness

- Follow Utrecht University instructions (https://www.uu.nl/en/information-coronavirus)
- Computer labs: if you need to work from home due to COVID (or other illness) do so,
 please inform Derek Karssenberg by e-mail on this (only to stay informed)
- If you are ill the normal OER regulations apply of course

Please note:

Active participation is required for working groups and personal project presentations

For all other activities it is recommended to come to the campus (not required)

Communication

During lab hours: in lab room

Ask staff in lab room

Outside lab hours: e-mail (no instant response)

- Questions on labs: join the computer labs at the scheduled hours and ask
- Personal questions related to course: send e-mail to Derek, <u>d.karssenberg@uu.nl</u>

Announcements or updates

I will use Announcements on Blackboard

Software installation (1): conda

- Package management system and environment management system
- Environment: separate folder on your computer containing the software
- You can have multiple environments and activate one depending on what you need

Installation:

- Vening Meinesz: Conda is already installed
- Your own hardware: install miniconda, https://docs.conda.io/en/latest/miniconda.html

Software installation (2): PCRaster and other tools in Conda environment

- Open a miniconda command prompt
- Create the pcraster environment and install software in the environment:

```
conda create -- name pcraster -c conda-forge python=3.11 gdal numpy ...
```

Activate the environment

conda activate pcraster

Details: http://karssenberg.geo.uu.nl/lspm/contentGeoinformatics.html#software-installation

Working in the Lab rooms V Meinesz

- 1) Self-subscribe to a Lab group (Blackboard)
- 2) Login to computer with special account, account name is IspmGN, where GN is your Lab group number, for instance <code>lspm04</code> or <code>lspm12</code>, use the password provided in the Announcements (Blackboard)
- 3) Start-up anaconda prompt (no need to install anaconda)
- 4) Install software (see previous slide)

Next time use same computer (and it will still be installed) otherwise install on other computer

All info on the course is at

http://karssenberg.geo.uu.nl/lspm

Marks

Final mark is weighted average of:

- Short paper assignment
- Written exam
- Oral presentation on case study project
- Report on case study project

Thank you! Questions?