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Rainfallrundf model of a hillslope (France)
* Observeddischarge a outlow point

dynamic
# rain per timestep (m/timestep)
Pr=timeinputscalar (RainTSS,Clone)

# flow out off the cell (m/timestep)

OR=(Q*T) /CA

# flow into the cell, from non channel cells (m/timestep)
QRNCh=upstream(Ldd, QR)

SurW=Pr+QRNCh

# infiltration
SurW=SurW-I;

# lateral inflow (m3/s)

QIn=( (SurW-QRNCh) *CA) /T;

# per distance along stream ((m3/s)/m))
q=0In/DCL;

Q = max(0.0001,Q) ;

Model run with measured (KSaj) and tabuated vaue ()
* Ko = 30 mm/h, n =0038
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Model structure
« Rainfall (timeseries)

« Infiltration
constart infiltration capacity
parameter: Ks,(mm/h)

* Runoff
Manning equation (kinematic wave)
parameter: n

timestep: 10 seconds, cellsize 10 m

# discharge (m3/s)
Q=kinematic (Ldd,Q,q,Alpha,Beta,T,DCL)

# water depth (m)
H=(Alpha* (Q**Beta) ) /Bw

# wetted perimeter (m)
P=Bw+2*H

# Alpha

Alpha=AlpTerm* (P**AlpPow)

Model run with measured (KSaj) and abuated vdue ()
« adjusted K, = 15 mm/h, n= 0.038
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Model run with measured (KSaj and tabuated vaue ()
« adjusted K, =20 mm/h, n=0.038
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Calibration
Finding inputs or parameters by minimizing the difference between
model outputs and measurements of these outputs

compare
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i.e. a set o state variables in which the interestlies

Calibration

» Automatic calibration (1)
» Objective function
* Response surface
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Model run with measured (KSaj) and abuated vdue (r)
« adjusted K., =20 mm/h, adjusted (increased) n= 0.047

Lower flow velocity
More time for infiltration
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manual adjustrent

Calibration, manual adjustment of parameters

Approach
Visual comparison between observed and modelled outputs
Manual adjustment of parameters (trial and error) to minimize
difference between observed and modelled outputs

Disadvantages:
. Subjective
Takes a lot of time
It is difficult to find the ‘best’ values, particularly with multiple
parameters
No information on the uncertainty of the estimated parameters

Automatic adjustment

Calibration, autometic adjustment

Approach:

- Define an objective function (also, goa function)

- Calibrate the parameters resuiting in the lowest (highest) value of
the goal funcion
Calibration is done with a computer agorithm




goalfunction goalfunction
Objective function Objective function

Provides a quantitaive measure of the goodness of fit between (the) Other examples:
model output(s) and dbserved vaues of the caresponding variables
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f=1.1xsin(2x)+ysin(4y)

Response suface, MSE vaue inthe example

0.08

\\l\\]'
1
‘M\\

mw

's n =>

goalfunction

manning

Response suface, MSE vauwe inthe exampe

0.08

IR
I |
‘\\\‘l‘

1

1]
1

goalfunction

's n =>

‘l“““ for— EelEe=leeag=a—g
tc::n \ \ul“ W ooe '——— observed \
= I | A Lot \
o | |
o I I Y I I |
8 \ |

| |
0.02 mode‘uled T }
f |
f [
|| K\ el
0 100 200 300 400 500 600 700

Examples of cther shapes of a 2D response surfaces
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Examples of ather shapes of a 2D response surfaces

Parameter 1

goalfunction

(mm/h) ->

goalfunction

Values in objective function do not

(or hardly) depend on parameter 1

« Example: cloudiness factor in an
event based rainfall-runoff model

Multiple combinations of parameter

values all give good objective

function values

« Example: models with many
parameters

Increasing Parameter 1 has similar
effect as decreasing Parameter 2
« Example Ksat and Manning's n

1D respons suface with many locd minima

goal function
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Higher-dimensional response surfaces goalfunction
When several parameters are unknown, e.g.

- saturated conduciivity of several sail layers
- vegetation cover of several vegetation units
- maximum interception store

- surface storage of several soil units
-mannings n

- groundwater flow parameters

-etc..

automatic adjustment

Calibration, autometic adjustment

Approach:
- Define a goa function

- Optimize the parameters resulting in the lowest (highest)value of
the goal funcon

ie.

how do we find the set of parameter I H“H |

1|
values resulting in the lowest (highest) L

value ofthe god funcion
or, in other words:
how do we find the minimum

(or maximum) of the response
surface

automatic adjustment

Choice o optimizaion dgorithms
Important is:

How close does the agorithm getto the red minimum value of the
goal function (response surface)?
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Calibration
» Automatic calibration (2)
» Calibration algorithms
* Wrap-up
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automatic adjustment

Calibration, autometic adjustment

Approach:
- Define a goa function

- Optimize the parameters resulting in the lowest (highest)value of
the goal funcion
Optimizationis done with a computeralgorithm
brute force
hill-climbing techniques
genetic algorithms

automatic adjustment

Choice of optimizaion dgorithms
Important is:

How close does the agorithm getto the rea minimum value of the
goal function (response surface)?

Is the global minimum found or just a local minimum?

Parameter 1

Parameter 2




Choice o gptimizaion agorithms

Important is:

How close does the agorithm getto the red minimum value of the

goal function (response surface)?
Is the global minimum found or just alocal minimum?

How many model runs are needed to find the minimum?

Brute force approach

Advantages:

- simple

- ‘whole’ respons surface is calculated
- (large) local minima are found

Disadvantages:

- Local minima are missed when small
- Optimizationis notdone inbetween
the steps for parameter vaues

used
Many model runs are needed
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Hill-climbing techniques

Use the shape of the response suface to reach the minimum vaue
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automatic adjustment
Brute force approach

1. Run the modé fora large setof parameter value combinations
2. Select the combination with the lowest value of the goal function
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Hill-climbing techniques

Use the shape of the response suface to reach the minimum vaue
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Hill-climbing techniques, steps in algorithm:
. Choose for each parametera starting value (= location on the
response surface)
Calculate the gradient of the response suface at that location (by
running the model with slightly different parameter values)
Go in the direction of tis gradient over the response surface o a
new location, if minimum is found, stop, or else continue at2




automatic adjustment

Hill-climbing techniques
advantages:

- Small number of runs needed (compared to brute force)
- Location of minimum can be found with high precision

automatic adjustment

Genetic dgorithms

Advantages:
- Capable o search inmany loca minima
- Relatively small number of model runs (compared to brute force)

Disadvantages

- Not possible (orvery difficult) to describe the value of the ouicome
by means of sfatistics

automatic adjustment

Hillclimbing techniques
Advantages:

- Small number of runs needed (compared to brute force)
- Location of minimum can be found with high precision

Disadvantages

- Danger exists thatonly alocal minimumis found (search is
always downhill
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automatic adjustment

Wrap-up - chdice of the optimization agorithm

Simple problems:
- brute force
- hill climbing approach
standard software available (PEST)

Multiple local minima:
- genetic algarithm (notexplained in this course)
- or combinaton of hill climbing and genetic algorithm




