Calibration of Environmental Models

Derek Karssenberg

Calibration e-lectures

- Introduction & manual calibration Automatic calibration (1): objective function & response surfaces Automatic calibration (2): calibration algorithms

Model structure

- Rainfall (timeseries)
- Infiltration constant infiltration capacity parameter: K_{Sat}(mm/h)
- Runoff Manning equation (kinematic wave) parameter: n

timestep: 10 seconds, cellsize 10 m

- dynamic # rain per timestep (m/timestep) Pr=timeinputscalar(RainTSS,Clone)
- # flow out off the cell (m/timestep) QR=(Q*T)/CA
 # flow into the cell, from non channel cells (m/timestep)
 QRNCh=upstream(Ldd,QR) SurW=Pr+ORNCh

infiltration SurW=SurW-I;

lateral inflow (m3/s) QIn=((SurW-QRNCh)*CA)/T; # per distance along stream ((m3/s)/m)) q=QIn/DCL; O = max(0.0001.0);

discharge (m3/s) Q=kinematic(Ldd,Q,q,Alpha,Beta,T,DCL) # water depth (m) H=(Alpha*(Q**Beta))/Bw # wetted perimeter (m) P=Bw+2*H # Alpha Alpha=AlpTerm*(P**AlpPow)

Calibration

Finding inputs or parameters by minimizing the difference between model outputs and measurements of these outputs

state variables z

- i inputs
- functionals
- **p** 0 parameters
- outputs

i.e. a set of state variables in which the interest lies

Calibration, manual adjustment of parameters

Approach

Visual comparison between observed and modelled outputs

manual adjustment

Automatic adjustment

Manual adjustment of parameters (trial and error) to minimize difference between observed and modelled outputs ٠

Disadvantages:

- Subjective Takes a lot of time
- It is difficult to find the 'best' values, particularly with multiple parameters
- No information on the uncertainty of the estimated parameters .

Calibration

- Automatic calibration (1)
 - Objective function
 - Response surface •

Calibration, automatic adjustment

Approach

- Define an objective function (also, goal function)
- Calibrate the parameters resulting in the lowest (highest) value of the goal function
- Calibration is done with a computer algorithm

Derek Kanssenberg

Objective functiongenericProvides a quartitative measure of the goodness of fit between (the)
model output(s) and observed values of the corresponding variablesExample: mean square error (MSE)
$$MSE = \frac{\sum_{t=1}^{n} (\hat{z}_t - z_t)^2}{n}$$
 \hat{z}_t
measured variable at t
 z_t
n unuber of timesteps

Difference function
Other examples:

$$f_{a} = |\hat{q}_{s} - q_{s}|$$

$$f_{a} = |\hat{q}_{s} - q_{s}|$$

$$f_{a} = |\hat{q}_{t} - q_{t}|$$

$$f_{b} = |\hat{q}_{t} - q_{t}|$$

$$f_{t} = |\hat{q}_{t} - q_{t}|$$

Higher-dimensional response surfaces

When several parameters are unknown, e.g.

- -saturated conductivity of several soil layers
- vegetation cover of several vegetation units
- maximum interception store
- surface storage of several soil units
- manning's *n*
- groundwater flow parameters
- etc

Calibration

- Automatic calibration (2) Calibration algorithms
- Wrap-up

Derek Kanssenberg

Calibration, automatic adjustment

automatic adjustment

goal function

Approach:

- Define a goal function
- Optimize the parameters resulting in the lowest (highest) value of the goal function

i.e.:

how do we find the set of parameter values resulting in the lowest (highest) value of the goal function

or, in other words: how do we find the minimum (or maximum) of the response surface

automatic adjustment

Calibration, automatic adjustment

Approach

- Define a goal function
- Optimize the parameters resulting in the lowest (highest) value of the goal function

automatic adjustment

automatic adjustment

- Optimization is done with a computer algorithm
 - brute force
- hill-climbing techniques genetic algorithms

Choice of optimization algorithms

Important is:

How close does the algorithm get to the real minimum value of the goal function (response surface)?

Choice of optimization algorithms

Important is:

- How close does the algorithm get to the real minimum value of the goal function (response surface)?
- Is the global minimum found or just a local minimum?

Choice of optimization algorithms

Important is:

- How close does the algorithm get to the real minimum value of the goal function (response surface)?

automatic adjustment

automatic adjustment

- Is the global minimum found or just a local minimum?
- How many model runs are needed to find the minimum?

Brute force approach

1. Run the model for a large set of parameter value combinations

automatic adjustment

2. Select the combination with the lowest value of the goal function

Automatic adjustment automatic adjustment

- 1. Choose for each parameter a starting value (= location on the response surface)
- 2. Calculate the gradient of the response surface at that location (by running the model with slightly different parameter values)
- Go in the direction of this gradient over the response surface to a new location, if minimum is found, stop, or else continue at 2

Hill-climbing techniques

- advantages:
- Small number of runs needed (compared to brute force)
- Location of minimum can be found with high precision

Hill-climbing techniques

Advantages:

automatic adjustment

automatic adjustment

Small number of runs needed (compared to brute force) Location of minimum can be found with high precision

Disadvantages

Danger exists that only a local minimum is found (search is always downhill

Genetic algorithms

automatic adjustment

automatic adjustment

Advantages:

- Capable to search in many local minima
- Relatively small number of model runs (compared to brute force)

Disadvantages

Not possible (orvery difficult) to describe the value of the outcome by means of statistics

Wrap-up - choice of the optimization algorithm

Simple problems:

- brute force
- hill climbing approach
 - lard software available (PEST) sta

Multiple local minima:

- genetic algorithm (not explained in this course)
- or combination of hill climbing and genetic algorithm